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SECTION 1

INTRODUCTION AND SUMMARY

1,1 BACKGROUND

Line-of-sight (LOS) pipes are frequently used in underground
nuclear tests to collimate- and transmit the radiation from a
nuclear source to an experimental test station. The radiation is
followed by a spherically divergent ground shock that causes the
LOS pipe to collapse and form a very high-energy plasma jet.

This Jjet represents a serious threat not only to the experiments
located at the test station but also to the successful stemming
and containment of the radioactive gases generated by the nuclear
explosion. As a result, various techniques have been developed
and used to delay, attenuate, or eliminate the high-energy flow
in LOS pipes. Baffles, energy absorbers, debris barriers, high
explosive valves, and fast-acting doors are examples of protec-
tion techniques that have been used together and separately with
mixed results. Although stemming and containment have been suc-
cessful in recent nuclear tests, the efficacy and reliability of
these elaborate (and expensive) techniques are still uncertain.

l.2 OBJECTIVE
The objective of the work reported here was to conduct an
experimental program to investigate the use of asymmetries that

could potentially be used tc inhibit the formation and. progres-
sion of the high-~energy axial jet that occurs in the collapse of
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an LOS pipe. Specific emphasis was directed toward the evalua-
tion of practical and cost-effective methonds which would cause an
off-axis collapse of the pipe and thereby either eliminate the
jet or minimize the energy contained in the jet.

1.3 SUMMARY OF RESULTS

Two different types of experiments were used to simulate the
ground shock collapse of an LOS pipe, explosive drivers and high
explosive spheres. Both methods produced high-energy jets from
the collapse of evacuated, small-diameter, thin-walled stainless
steel tubes (LOS models). In the explosive driver experiments,
the LOS models were collapsed by the progressive detonation of a
cylinder of high explosive surrounding the model., In the
spherical high explosive experiments, the models were embedded in
saturated sand and collapsed by the shock wave diverging from a

sphere of high explosive., The major results of these experiments
are presented below. Special emphasis is given to the effect of
asymmetries., More detailed results will be found in the relevant
sections of this report.

1.3.1 Spherical High Explosive Experiments (LS-1 and L&-2).

e Helical asymmetries on the internal surface of an LOS
model appear to eliminate or suppress jet formation,

o Helical asymmetries on the external surface of an LOS
model do not reduce the energy of the jet.

e Thin liners on the inside surface of an LOS model form a

jet. The jet energy seems to be highly dependent on the
material properties of the liner.

12
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e Increasing the wall thickness (by adding mass uniformly to
the external surface) of an LOS model produces a higher
energy jet than models with no external liners.

e The target damage from one standard LOS model (i.e., no
asymmetries) was approximately 80 percent greater than a
second standard model evaluated in the same experiment.

e The jet formation conditions resulting from the collapse
of an LOS model by a spherically diverging shock wave are
considerably different from those resulting from the
explosive collapse of a model., Asymmetries that are ef-
fective for one type of collapse may not be effective for
the other.

1.,3.2 Explosive Driver Experiments (APC Series).

e Helical asymmetries on the external surface of an LOS
model appear to eliminate or suppress jet formation., Lead
and foam helixes produced comparable results.

e An LOS model with a square cross—section showed less
jetting than models with a circular cross-section.

e One atmosphere of air in an LOS model suppressed jet
formation.

e The jet from a standard LOS model (no asymmetries) was
characterized. The jet was reproducible. It had a
velocity of approximately twice the detonation velocity of
the explosive used. The jet was not discernable on
radiographs capable of resolving 0,0025 mm of steel.
Models with steel and stainless steel tubes produced
comparable jets.

e Explosively collapsed tubes cannot be used to simulate the
collapse of a tube by a spherically diverging shock wave.

COMMENTS AND RECOMMENDATIONS

The experimental results reported here indicate that

internal asymmetries may be a promising method of reducing or

-y -
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eliminating the Jjetting phenomena in small, evacuated steel tubes
that are collapsed by spherically diverging shock waves. How-
ever, the number of experiments and the scale of the experiments
were too small to postulate the efficacy of using similar asym-
metries on a full-scale LOS pipe in an underground nuclear test
environment. Such use should only be considered after a more
comprehensive investigation provides a better understanding of

jetting and the effects of asymmetries.

Increasing the data base should be the first priority of
further investigations of asymmetries., 1Initial efforts should be
directed at experiments designed specifically to determine the
reproducibility of the jetting/nonjetting phenomena. Experiments
should also be performed to understand the source of jetting and
to establish whether internal asymmetries eliminate the cause or
suppress the results of jetting. These experiments should be
well instrumented to characterize the dynamic and thermodynamic

properties of the jet.

A parametric study should also be conducted after the repro-
ducibility and source of Jjetting have been established. The
results of these experiments would establish the sensitivity of
specific asymmetry parameters on the collapse and jetting
process. They would also provide an experimental data base for

modeling the process.

Candidate LOS pipe designs should be developed during the
final phase of the parametric study. Still, separate experiments
should be performed to evaluate specific designs. As much as
possible, the experiments should be designed to simulate the con-

14
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ditions that would be expected in an underground nuclear test,
Particular emphasis should be placed on: (1) the scale of the
experiment; (2) the LOS pipe material and geometry; (3) the ef-
fect of a particular testing site; (4) the presence of grout; (5)
blow-off gases in the pipe, and (6) the yield of the nuclear

device,

Finally, a small-scale, proof-of-concept experiment could be
added to the underground nuclear test program. Successful
results from such an experiment would not only validate the con-
cept of using asymmetries, it would validate the methods used to
select and design the asymmetries and maximize the probability of
success on a full-scale LOS pipe.

15
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SECTION 2

EXPLOSIVE DRIVER EXPERIMENTS

2,1 BACKGROUND

Explosive drivers were selected as a vehicle for producing
jets in the laboratory that were similar to those generated by
the ground-shock collapse of an LOS pipe. This selection was
based on the results of extensive theoretical and experimental
investigations of Jjetting and nonjetting explosive drivers per-
formed by Physics International Company during the past
15 years. A comprehensive summary of these results, including a
description of the operating characteristics of explosive

drivers, is given in References 1 through 8.

Jetting in an explosive driver can be enhanced or suppressed
by the choice of certain experimental parameters or combinations
of parameters, For example, the experiments illustrated in Fig-
ure 1 show the effect of the initial pressure of the gas
contained in an explosive driver (Reference 1), Diluted nitro-
methane with a detonation velocity of approximately 0.55 cm/us
was used for these experiments to progressively collapse a
0.794-cm~ (3/l6-inch-) diameter steel tube having a wall
thickness of 0.074 om (0.029 inch). It is seen that the shock
velocity increases as the initial pressure is decreased.
Furthermore, when the tube is evacuated the shock velocity is
approximately twice the detonation velocity. Since this doubling

17
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0 20 20 60 80 700
=% (DIMENSIONLESS DISTANCE)

Figure 1 Explosive driver trajectories showing the effect
of initial gas pressure.

18




B aagh g8

represents the theoretical limit of jet formation, 1t can be in-
ferred that the high velocity is a result of jetting tube
material.

Figure 2 shows the results of an experiment performed
specifically to examine the character of a jet from an explosive
driver. A 50 cm length of polymethyl methacrylate (PMMA) tubing
was used to extend the driver and contain any jetting material so
that high—fesolution radiographic diagnostics could be used. The
radiograph taken at 60 us shows the existence of a high~density
metal jet (Figure 2b). Furthermore, the observed shock
trajectory indicates severe mixing of the jet with the shocked
gas, causing the jet tip to be quite close to the shock front.

As a comparison, Figure 3 shows the trajectory and radiograph of
a driver with a higher initial pressure in which jetting did not

occur.

The results of these experiments provide the background and
basis for selecting the explosive driver techniques to investi-
gate the jetting in LOS pipes. The specific designs and design
methods used in this program are given in the following section.

2.2 DESIGN OF JETTING EXPLOSIVE DRIVER

Explosive drivers were used in this program primarily for
testing and evaluating various methods of using asymmetries to
eliminate or reduce jetting in a collapsing pipe, It was well
recognized that the collapse generated by the drivers is a
steady~-state process and cannot be used to rigorously simulate
the nonsteady collapse of the entire length of an LOS pipe by a

19
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a. SHOCK TRAJECTORY GENERATED BY A JETTING DRIVER

1 1 ) i I T
EL506C\ /5/8-in. o.d. x 0.035 wall stee! tube /PMMA tube

P —— -
E"””"““"“”/‘
100 psi helium / Jet material
/ potom
~ BT T A

60 |-— X-ray time
(see radiography below)

Detonation wave

0.7 cm/us
. 20 Shock wave, n
2 1.38 cm/us
w
2
~ 30 -
20 —

O Experimental data

= — — = ldeal shock trajectory of
non-jetting driver

== = == |deal trajectory of jetted material
assuming no mixing of jet-gas

10

interface
| 1 1 | 1 1
10 20 30 40 50 60
POSITION, cm

b. RADIOGRAPH SHOWING JETTING MATERIAL WELL
MIXED WITH DRIVER GAS 60us AFTER INITIATION

B b

W e Bhe S e 11T GE e s

Figure 2 Performance characteristics of a jetting driver
(shot 255-26 from Reference 1).
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a. SHOCK TRAJECTORY GENERATED BY FIRST-STAGE DRIVER

PMMA

Tamper Nitromethane Helium tube
(245 psi)

AN
W S S, 11111_411111x1171%
— Ry

280
Steel tube, 9/16-inch O.D. /
x 0.035 wall
240 }
le— Time of x-ray L .
77

{see radiograph below)

[ /. /
200 %
/e

o
P

L]
3 " Detonation wave
w 50T (069 cm, ps)
=
[
120 1
/7\
/e Shock wave
80t 7
5 ® Experimental data
40 'Y ——=—ldeal shock trajectory
A L i 1 1 1 1 L 1
0 40 80 120 160 200
DISTANCE, cm

b. RADIOGRAPH OF SHOCKED DRIVER GAS 222us AFTER INITIATION

PLEXIGLASS TUBE
R ]

SHOCK FRONT
o et~ tonty N

Figure 3 Results of an experiment to investigate the possibility
of jetting in an explosive driver (shot 255-28). (See

Reference 1.)
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spherically divergent ground shock. Therefore, the design
approach was based on the reproduction of those critical
parameters that were expected to contribute most significantly to
the collapse and jetting of an LOS pipe. Mighty Epic and Diablo
Hawk were used as representative underground nuclear tests.

Where appropriate, these events were analyzed to establish the
baseline environment, collapse conditions, and LOS pipe con-

figurations.

The first step in the design process was to define the
collapse conditions at a distance from the nuclear source where
the peak stresses in the free-field were comparable to the
stresses that can be generated by chemical high explosives, Fig-
ure 4 shows the peak radial stress calculated as a function of
distance from the Mighty Epic source. This figure also shows the
detonation pressure of typical high explosives comparaple to the
free-field stress at ranges between 10 meters (HMX) and 14 meters
(nitromethane).

The LOS pipe collapse conditions were calculated from
"close-in" data from the Mighty Epic event. The curves given in
Figure 5 from Reference 9 summarize some of these conditions.
These curves show the trajectories of the ground shock and
collapse point for a range between ll meters, where the LOS pipe
begins, and 25 meters, While the pipe collapse angle was judged
to be 15.6 degrees # 1.3 degrees over this range, the axial and
radial collapse velocities given in this figure are based on a
constant collapse angle of 15,6 degrees. With this assumption,
Figure 5 shows an axial collapse velocity between 0.73 cm/us and
0.39 cm/us for the range interval of 11 to 14 meters.
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Figure 4 Calculated peak radial stress versus range for Mighty

Epic and the detonation pressure of various high
explosives.
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Figure 5 LOS collapse characteristics for Mighty Epic

(Reference 9).
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Nitromethane was selected as tne driver explosive. The
detonation pressure l4 mPa (140 kbar) and detonation velocity of
approkimately 0.62 cm/us for this explosive are comparable,
respectively, to the values for the free-field peak stress and
the axial pipe collapse velocity in the range of 1l meters to
14 meters. In addition, the procurement, manufacturing, and
assembly procedures for using this liquid explosive are
considerably less difficult than those associated with most other

explosive candidates,

The most critical parameter affecting jetting phenomena in
explosively collapsed tubes is the coilapse angle (illustrated in
Figure 6). Here, a metal tube is deflected through a collapse
angle, B, by the detonation pressure of a cylindrical charge of
explosive surrounding the tube. As the tube converges and
impacts on the axis, a jet is formed, Classical jetting theory
(Reference 10) shows that the collapse velocity, Vo, the detona-
tion velocity, Uy, and collapse angle, 8, are related by

v
—~_
2U

sin % =
ad

The ratio of the mass in the jet, my, to the mass in the tube,

m is given oy

OI

Fur aermore, the jet velocity, Vj, would be
\%
vV, = °© =2wu, .
J tan % d
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Figure 6 Illustration of a jetting explosive driver.
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These equations show that the collapse velocity of a tube
surrounded by nitromethane (Ug = 0.62 cm/us) would vary between
0.15 em/es and 0.18 cm/us for the range of collapse angles,

15.6 £ 1.3 degrees, calculated for the Mighty Epic event. Since
the mass contained in the jet is larger for larger collapse
angles, the upper end of this range (v 17 degrees) was selected
for the driver design in order to generate the highest energy

flow possible in the collapsed tube.

Having selected the explosive and the collapse angle, the
remaining task was to establish the tube dimensions, The
engineering drawings for the LOS5 pipe used for the Mighty Epic
and Diablo Hawk events showed a tapered steel pipe design with a
wall thickness of 0.476 cm (3/l6 inch) and an inside diameter of
37.008 cm (14,57 inches) at a range of 14 meters (Refer-
ence ll). These dimensions could not be scaled down precisely to
the dimensions of standard tubing and still obtain the desired
collapse angle. However, a close apprcximation could be achieved
by using a standard 7.937 cm (3-1/8 inch o.d. PMMA tubing with a
wall thickness of 0.317 cm (1/8 inch) to contain nitromethane
around a steel tube with an outer diameter of 5.042 cm (1.985
inch) and a wall thickness of 0.071 cm (U,028 inch)., This latter
specification can be met merely by grinding 0.018 cm (0.007 inch)
from the outside surface of commercially available steel tubes
(5.08 cm o.d. [2 inches] with a wall thickness of 0,089 cm {0,035
inch]). One-dimensional, time-dependent finite difference
calculations of the collapse of this configuration indicated a
collapse velocity of 0.18 cm/us and a collapse angle of 17

degrees.
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Figure 7 shows an engineering sketch of the explosive
érivers used in this program. A PMMA tube having approximately
the same inner diameter as the steel driver tube was used to
extend the steel tube to mock up the sections of an LOS pipe that
do not collapse, to facilitate radiographic measurements of the
Jet, and to minimize the blast and debris effects on the aluminum
targets. The vresults from experiments using this driver design
are given in the following section. Any deviations from this

design are appropriately noted.
2.3 EXPLOSIVE DRIVER EXPERIMENTS

A complete list of the APC series of explosive driver tests
is given in Table 1. The objectives of the tests designated
APC-1 through APC-4 were to investigate the jetting
characteristics of the drivers. Asymmetries were then included
in tests APC-5 (lead wrapped), APC-7 (foam wrapped), and APC-8
(square cross-section). The air pressure inside the steel tubes
was reduced to a few millimeters of mercury except for APC-6,
which was a test to examine the effects of 1 atm. of pressure.
Stainless steel tubes were intoduced in tests APC-9 through APC-
11 in preparation for the large spherical high-explosive
experiment described in Section 3., The variety of wall
thicknesses commercially available in small-diameter stainless
steel tubing reduced the magnitude and expense of this

experiment.

2.,3.1 Instrumentation and Data Presentation. The typical

instrumentation used for the explosive driver tests includes:

(1) ionization pins for measuring the time of arrival of the

- 28
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detonation wave 1n the explosive at six axial locations; (2)
ionization pins for measuring the time of arrival of the jet at
five locations in the PMMA tube that extended beyond the
explosive driver; (3) a radiograph of the collapsing tube using a
1-MeV Pulserad Model 107A X-ray generator with a pulse length of
30 ns; (4) flash radiographs of the jetting phenomena in the
Lucite tube extension of the driver using 80 kV, 5 kA pulsed
X-ray generators (COBRA's) with a pulse duration of 40 ns, (5) an
aluminum target to permanently record the damage caused by each
jet; and (6) a single ionization pin located on the front surface
of the aluminum target to determine the time of arrival of the
leading edge of the jet at the target. In addition, high-speed
photography and break-wires were used to investigate the
characteristic of the jet in tests APC-4 and APC-5, respectively.

2,3.,2 Format for Data Presentation., The top of Figure 8

shows a sketch of a typical experiment using standard
instrumentation. This figure also shows the format used for
presenting the experimental data in this section. An x-t plot is
used to present the arrival time of the detonation wave and jet
as a function of the distance from the detonator used to initiate
the explosive. The locus of these points will define the
trajectories of the detonation wave and the jet, and the slope
will be used to define their velocity. It should be noted that
the abscissa in Fiqure 8 is the distance axis (x) and provides a
one-to-one correspondence with the axial dimensions of the
explosive driver experiment sketched at the top of this plot. It
also includes the axial extent of instrumentation, For example,
radiography coverage is given as a horizontal bar positioned at
the time the X-ray was taken and extending for a length that is
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HIGH EXPLOSIVES
HIGH EXPLOSIVES
CONTAINER EXTENSION TUBE

DETONATOR TARGET DAMAGE

DRIVER TUBE /TARGET

]
I
|

X-RAY OF DRIVER COLLAPSE
(ANGLE, TIME AND POSITION)
!

TRAJECTORY OF
DETONATION WAVE
(DETONATION VELOCITY)

i
IONIZATION PINS
(TIME OF ARRIVAL-
DETONATION WAVE)

HIGH-SPEED CAMERA
VIEW OF THE JET
(DATA POINTS)

IONIZATION PINS
(TIME OF ARRIVAL-
JET FRONT)

TRAJECTORY OF JET
(JET VELOCITY)

TIME, us

JET STARTUP POSITION

X = POSITION, cm

Figure 8 Format used for presenting experimental results.
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equal to the axial field of view of the X-ray film used. Actual
radiographs for each experiment are presented after each x-~t
plot. These radiographs will be followed by photographs which

show the jet damage to the aluminum targets.

2.3.3 Experimental Results.

Tests APC 1 and 2 (symmetrical). The fist two explosive

driver tests, APC-1 and APC-2, were identical except for the
radiographic coverage of the jet., Each driver was separate from
a 2.54-cm- (l-inch-) thick aluminum target by a 60.96 cm (24
inch) length of PMMA tube with an inside diameter of 5.08 cm

(2 inches) and a wall thickness of 0.635 cm (1/4 inch). The
driver tubes were evacuated to a pressure in the range of 1l to
1.5 mm Hg. In test APC-1l, the location and timing of the
radiographic diagnostics were based on obtaining a jet with an
assumed velcocity approximately twice the detonation velocity of
nitromethane, or 1.22 cm/us., Therefore, two radiographs were
used to determine the location, condition, and velocity of the
jet after emerging from the explosive driver section and before
impacting the aluminum target. The time of arrival obtained from
a single ionization pin located on the front surface of the
target would confirm the velocity of the jet.

The results of APC-1 are presented in Figures 9
through 12, The x-t plot given in Figure 9 shows that the
nitromethane had a detonation velocity of U.61 cm/us. The time
of arrival for the ionization pin located on the front surface of
the aluminum target (183 cm) was 18l1.9 us. This value is in very

good agreement with a predicted arrival time of 176 us based on
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Figure 9 Results from explosive driver test APC-1.
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{b) t = 165 us 180 cm = x = 143 cm

jetting explosive driver in test APC-1,
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Aluminum target from test APC-~1.
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the assumption that a continuous jet 1s formed instantanecusly on
the axis of the driver tube 13 us after the passage of the
detonation wave, which is the time required for the inner surface
of the tube to reach the axis. The prediction also assumes that
the jet has a velocity twice that of the detonation velocity of
the explosive (dashed line in Figure 9). Figure 10 is a
radiograph of the explosively collapsing tube. The collapse
angle of 16.5 degrees was in very good agreement with the desired
value of 17 degrees. Based on the Jjet predictions and the time
of arrival at the target surface, the leading edge of a jet was
expected in the center of the radiographs taken at 152 us and

164 us., These radiographs, given in Figure 11, showed no visible
evidence of jetting. However, there was extensive damage to the
2,54 cm (1 inch) aluminum target as shown ky the photographs in
Figure 12, The target had been completely penetrated and had a
hole diameter approximately equal to the internal diameter of the
PMMA tube. On the basis of such conflicting evidence of jetting,
it was postulated that either the Jjet was diffuse (gaseous or
liquid droplets) and beyond radiographic resolution, or the
target damage was a late-time phenomencn caused by low velocity
debris, jets, or slugs from the termination of the driver
explosive. The latter possibility was investigated in the second

experiment, APC-2,

The radiography coverage for APC-2 was relocated to examine
the collapse process near the end of the explosive and to record
any slow moving fragments or Jjets that migkt account for the
target damage in the previous experiment. X-ray location and
timing were selected to record velocities as low as 0.4 cm/us.
Figures 13 through 16 indicate that the experimental results of
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Figure 13 Results from explosive driver test APC-2,
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APC-2 were quite comparable to those of APC-1. The x-t plot,
given in Figure 13, shows a detonation velocity of (.6l ém/us. A
radiograph made near the end of the explosive, Figure 14,
appeared normal and showed a collapse angle of 16 degrees.

Still, there was no evidence of Jjetting, early or late, in the
radiographs taken at 197 ws and 224 us, and presented in

Figure 15. However, once again the target was completely

penetrated (Figure 16).

Test APC-3 (symmetrical-—-Additional Instrumentation). Even

though jets were not resolvable in the radiographs of the two
initial driver tests, the target damage and target arrival times
were consistent with a very high velocity, but diffuse, plasma
jet. Additional diagnostic techniques were added to this
experiment to obtain a better understanding of the jet charac-
teristics. Several dimensional changes were made in the experi-
mental configuration to accommodate these technigques and to

assist in the interpretation of results.

The length of the PMMA tubing between the explosive driver
and the aluminum target was increased from 60.96 cm (24 inches)
to 121,92 cm (48 inches) in order to record the entire jet (tip-
to-tail) on two adjacent X-ray cassettes. In addition, the wall
thickness of this tubing was decreased from 0.635 cm (1/4 inch)
to 0.317 cm (1/8 inch) to reduce the X-ray attenuation and
thereby increase the resolution of the jetting material on the
X-ray film. A steel step wedge, with 0.0025 cm (U.001 inch)
steps, was mounted on the outside of the tube to provide a
density resolution standard on the X-ray film. Five ionization
pins were added to the PMMA tubing to measure the velocity of the
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leading edge of the plasma jet. Finally, the thickness of the
aluminum target was increased from 2.54 cm (1 inch) to 10.15 cm
(4 inches) so that the depth, diameter, and volume of Jjet

penetration in aluminum could be determined.

The results from this experiment are presented in Figures 17
to 20, The trajectories presented in Figure 17 show a detonation
velocity of 0.61 cm/us and an average jet velocity of
1.21 cm/us. However, it should be noted that the actual
differences in the time of arrival for adjacent ionization pins
indicate jet velocities ranging between 1.06 and 1.33 cm/us.

This difference could either indicate that the diffuse jet is
nonplanar (i.e., tilted or oscillating during transit) or that
the ionization environment causes a nonreproducible response from
the pins used. A collapse angle of 17 degrees was obtained from
examination of the collapse radiograph given in Figure 18, Jets
were not evident in the radioyraphs taken at 174 us and 211 us,
While the energy density of the jet was sufficient to deform and
ablate the ionization pins as shown in Figure 19, the jet could
not be resolved with high contrast printing, image enhancement,
or densitometry. Still, the target damage was extensive., Fig-
ure 20 shows that the plasma jet had not only penetrated the full
10.16 cm (4 inch) aluminum target but also caused the target to

fracture longitudinally into six different segments,

On the basis of the radiographic data, it would appear that
the jet is either a gas, or it is composed of individual droplets
or particles that are smaller than the 0,0025 cm (0,001 inch)
steps in the steel step wedge., However, one would expect to see
a well defined gradient near the leading edge of the jet if it
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were a gas. On the other hand, the resolution of the X-ray
system would be insufficient to observe individual droplets or
particles., For example, the image of a 0,0025 diameter particle
moving at a velocity of 1.2 cm/us would be smeared over 0,048 cm
(19.2 diameters) during the 40 ns duration of the X-rays. There-
fore it is reasonable to conclude that the jet is a cloud of
individual droplets or particles.

Even though a well-defined jet was not visible in the radio-
graphs, the steel step wedges used in this experiment provide a
representative value for the average density of the diffuse
jet. The very resolvable ¢.0025 cm (0,001 inch) step in a steel
step wedge with a density of 7.84 gm/cc would be the equivalent
to a jet density of 0.0039 gm/cc if the jet mass were uniformly
distributed in the 5.,U8-cm- (2-inch-) i.,d. PMMA tube, This value
is in reasonable agreement with a density of 0.0065 gm/cc that
would be obtained by filling the entire volume inside the PMMA
tube with the jet mass as determined from the classical Jjetting
theory described in the previous section, The mass of the driver
tube per unit length for this experiment was 8.7 gm/cm., Assuming
that the Jjet is generated by 90 cm of the driver tube (distance
from the point where the jet trajectory intercepts the detonation
trajectory to the end of the explosive section), the jet mass
would be 16.1 grams for a collapse angle of 16.5 degrees, 1If
this mass were distributed uniformly throughout the 122 cm
{48 inch) length of 5.08-cm~ (2~inch-) i.d. tubing, the jet
density would be 0,0065 gm/cc. It is also of interest to note
that the kinetic energy of a 16,1 gram jet traveling at
1.21 cm/us would be 1.22 MJ,
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Test APC-4 (Symmetrical Baseline). This test was performed

to establish the reproducibility of the results obtained in the
previous experiment and, 1if reproducible, to establish the
baseline perfomance characteristics of a symmetrical collapse.
The 10.16 cm (4 inch) aluminum target was placed in a thick-
walled steel cylinder to prevent fracturing so that estimates of
the jet energy could be obtained from the penetration profile in
the target. Except for the instrumentation added to investigate
the properties ot the jet, the remaining configuration and test
parameters for this experiment were the same as APC-3, The addi-
tional instrumentation included a high-speed framing camera
positioned to view the jet in the PMMA tube between the explosive
driver and the target. Also five small-diameter enameled copper
wires were placed across the inside of the PMMA tube at 5 cm
intervals. The objective was to determine the location and
geometry of the jet flow by the deformation and ablation of these

wires since they were visible in the radiographs.

The results of test APC-4 are presented in Figures 21 to

25. The x-~t plot given in Figure 21 shows a detonation velocity
of 0.60 cm/us and an average jet velocity of 1.25 cm/us. The jet
velocity among the six individual ionization pins varied between
1.19 cm/us and 1.44 cm/us. Figure 22 is a radiograph of the tube
collapse which gave a collapsed angle of 17 degrees. Even though
the jet boundaries were still undefined in the radiographs shown
in Figure 23, the deformation and ablation of the pins and
breakwires indicate the jet flow was not planar. Figure 24 shows

the jet completely penetrated the 1U.1l6 cm (4 inch) aluminum
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Figure 21 Results from explosive driver test APC-4 (baseline).
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120 ND-1
165 ND-1
175 ND-1
185 ND-1
190 NONE
195 ND-1
205 ND-1
215 ND-1

Selected frames from high speed photography of PMMA
extension tube downstream of jetting explosive driver
in test APC-4 (baseline).
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target and that the steel sleeve indeed prevented residual target
fracture. Selected frames from the photographic coverage of the

jet are given in Figure 25,

Test APC-5 (Asyrmmetrical, Lead-Wrapped. This test was the

first of the series designed and conducted to investigate the
effect of an asymmetrical configuration., A lead ribbon was
wrapped in a helical pattern around the outside of the steel
driver tube. In principle, the added mass of the lead would
cause a reduction in the radial velocity of the tube under the
load. Calculations indicated that the addition of 0.U8l-cm-
(0.032-inch-) thick lead would reduce the velocity from

0.18 cm/us to 0.10 cm/us. 'This difference would cause the lead-
wrapped side of the tube to encounter the unwrapped opposite side
at a position approximately 0.635 cm (1/4 inch) off the
centerline of the tube. It was postulated that such an asymmetry
would either eliminate any significant jetting or direct the jet
to the walls of the tube instead of down the axis of the tube. A
2.54~cm- (l-inch-) wide ribbon was cut from 0.08l-cm- (U,032-
inch~-) thick sheet lead and epoxied to the driver tube in a
helical configuration having a 10,16 cm (4 inch) pitch (pitch
angle of 32.67 degrees) as shown in Figure 26. This figure also
shows the expected collapse conditions., Otherwise, the
experiment was designed, fabricated, and instrumented in the same
manney as the symmetrical baseline experiment, test APC-4,

The results of test APC-5 are presented in Figures 27
through 31. The trajectories of the plasma jet and detonation
wave are shown in the x-t plot of Fiqure 27, The radiograph in
Figure 28 shows the change in collapse conditions resulting from
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(a) . BEFORE COLLAPSE :
0.081-cm-THICK LEAD, 2.54 cm WIDE
AND SPACED 10.16 cm APART o

IN ASPIRAL WRAP

¢ =PITCH ANGLE = ARCTAN

% 10.16 cm

— = "0 = 3267°

7D 7(5.042 cm) 3267
P//////////////////Q
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(b) DURING COLLAPSE

Figure 26 Configuration of explosive driver tube with helical

lead ribbon used in test APC-S.
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FRAME NO. TIME, us

3 125 ND-1
12 170 ND-1
14 180 ND-1
16 190 ND-1
18 200 ND-1
20 210 ND-1
21 215 NONE
22 220 ND-1
24 230 ND-1

Figure 31 Selected frames from high speed photography of PMMA
extension tube downstream of explosive driver in
test APC-5 (helical lead ribbon).
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the lead wrap. It also shows that the collapse angle for the un-
wrapped side of the tube was as expected, approximately

17 degrees, There was very little evidence of jetting in the
radiographs in Figure 29, which show no significant deformation
or ablation of the breakwires, though the first ionization pin
was bent. Figure 30 1is a photograph of the target which shows
very small surface cratering instead of the full target
penetration obtained from the baseline driver., Selected frames
from the high-speed photography of the PMMA tube extension are
given in Figure 31, This record confirmed that the leading edge
of the plasma jet had a velocity of 1.15 cm/us., Since the target
showed considerably less damage than the baseline experiment
(indicative of less momentum and energy 1in the jet), and the jet
velocity was not reduced, the mass contained in the flow must

have been significantly reduced.

Test APC—-6 (Symmetrical-—-One Atmosphere Air). This

experiment was conducted to investigate the effect of having

1l atm. of air in the explosive driver tube instead of the normal
1 mm Hg used in the previous jetting experiments. This parameter
change was motivated by the possibility that an air-filled pipe
could be used in an add-on experiment on a future underground
nuclear test. The results from this experiment are given in
Figures 32 through 25. The trajectories of tes* results in
Figure 32 indicate a much lower jet velccity. The observed jet
velocity of 0.85 cm/us is considerably less than the 1.20 cm/us
for the baseline design (APC-4) and higher than would be expected
for a nonjetting driver. In the latter case, the progressive
collapse of the pipe behaves like a conical shaped piston moving

at a constant velocity (detonation velocity) of 0.60 cm/us into
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the 1 atm, air environment. This motion generates a shock wave
with a shock velocity of (y+l)/2 times the detonation velocity,
where v is the ratio of specific heats for the alr. Assuming

y = 1.4 for air (an upper limit), the shock velocity would be
0.72 cm/us for a piston with a velocity of 0.60 cm/us. The
observed velocity of 0.85 cm/us indicates some jetting did
occur. Figure 33 shows a normal collapse angle (17 degrees), ard
there is no evidence of jetting indicated in the radiograph in
Figure 34. Also, the photograph shown in Figure 35 shows no
damage to the target. It was therefore concluded that 1 atm, of
air in the driver inhibits the formation of jetting and
considerably reduces the energy flow down the axis of an

explosively collapsed tube,.

Test APC~7 (Asymmetrical-—Foam Wrapped). In this

experiment, a ribbon of foam was helically wrapped around the
explosive driver tube to cause an asymmetrical collapse. The
foam was used to displace some of the nitromethane around the
tube and thereby reduce the radial collapse velocity beneath the
tube., The reduced velocity would cause an off-axis collapse and
eliminate or redirect the jet in the same manner as the
experiment using lead wrapping, APC-5., Calculations indicated
that a foam with a density of 0.925 gm/cc and a thickness of
0.762 cm (0.3 inch) would give a radial tube collapse velocity of
0.10 cm/us, the same as calculated for APC-5. The foam ribbon
was 2.54 cm (1l inch) wide and epoxied onto the steel driver tube
with a 10.16 cm (4 inch) pitch (pitch angle of 32.67 degrees).

Figures 36 through 39 present the results of experiment APC-
7. The x-t plot given in Figure 36 indicates a detonation
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Figure 36 Results from explosive driver test APC-7 (helical
foam ribbon).
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velocity of 0.61 cm/us and a jet velocity of 1.23 cm/us., The
effect of the foam ribbon can be seen ir the radiograph of Fig-
ure 37. The ccllapse angle on the side without foam appears to
be approximately 17 degrees. There was no evidence of jetting in
the radiographs of the extension tube given in Figure 38, even
though images of the cloth tape used to secure the ionization pin
cables were quite visible, The damage to the target was greater
than that using lead wrapping but still quite insignificant as
can be seen in Figure 39, . Once again, asymmetries apparently
reduced the mass contained in the jet of an explosively collapsed

tube.

Test APC-8 (Asymmetrical--Square Driver). The third method

of introducing asymmetries into the collapse of a tube was to
change the cross-section of the explosive driver. Square steel
tubing, with a cross—-section of 5.08 cm (2 inches) by 5.08 cm

(2 inches) and a wall thickness of 0.124 cm (0.049 inch) was
selected for this experiment. The greater thickness was required
to withstand a vacuum with the square cross-section., The
nitromethane was contained in a square Lucite box which
surrounded the square steel tube, The thickness of the
nitromethane was 1.99 cm (0.785 inch), which gave an explosive
mass—to-metal mass ratio of 2.3:1. This value was chosen to give
the same collapse angle as had been used in the cylindrical
drivers. The Lucite extension tube was also square and of the

same internal dimeansions as the driver,
The results of experiment APC-7 are presented in Figures 40

through 42, The x-t plot given in Figure 40 indicates a
detonation velocity of 0.62 cm/us and a jet velocity of
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Figure 40 Results from explosive driver test APC-8 (square driver).
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1.24 cm/us. Radiographs of the collapse region were not obtained
because the X-ray cassette was damaged by the blast and debris
from the higher explosive weight required on this experiment,
There was no evidence of jetting on the radiographs given in
Figure 4l1. The white pattern on the left of one of the
radiographs is pressure printing of the film due to the severe
airblast environment. Figure 42 shows that the target damage was
definitely less than that produced by the baseline driver, APC-4,
bat considerably more than that of the lead wrapped driver,
APC-5,

Test APC-9. This experiment was conducted to determine if
the jetting characteristics generated by the collapse of a
stainless steel tube were the same as those generated by the
previously used carbon steel tubes. The motive for obtaining
results on stainless c*eel tubes is the requirement to use
smaller diameter tupes in the spherical high explosive experiment
described in the next section., Attempts to grind the outside
surface of smaller diameter (1.27 to 2.54 cm [1/2 to 1 inchl])
carbon steel tubing to the desired wall thickness had produced
unacceptable variations in dimensions and uniformity. Such pre-
existing variations could mask the effects of added
asymmetries. Since stainless-steel tubing is commercially avail-
able in small diameters with a wider range of wall thicknesses
and smaller tolerances, it became the preferable material to use
for the drivers. This experiment was used to isolate any effects
which might possibly be due to this material change before
reducing tube dimensions. Except for the use of stainless steel
tube in the explosive driver, there were nc changes in the

experimental configuration.
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Figures 43 through 46 show that the results from this
experiment were practically identical to those from the baseline
experiment, APC-4. The tajectories of the detonation wave and
plasma jet, given in Figqure 43, indicate velocities of 0,61 cm us
and 1.2z cm/us, respectively. Except for problems that arose in
film processing, the radiograph showing the collapse (Figure 44)
appeared dquite normal. The collapse angle is 17 degrees. While
clearly defined jets were not present in :the radiographs of
Figure 45, there were cloud-like images benind the front as
measured by the ionization pins. The target damage shown in
Figure 46 was cuite similar to that produced by the baseline

experiment.

Test APC-10 (Stainless Steel--1,905 cm {3/4 inch]
Diameter). This experiment was expected to establish the

baseline performance data for the tubes to be used in the
spherical test described in Section 4. Tre diameter of the
explosive driver tube was scaled down by a factor of
approximately 2.65 to obtain a wall thickness of 0,028 cm (0.012
inch) and an outer diameter of 1.905 cm (3/4 inch). The length
of the stainless steel tube and the PMMA extension tube were the
same as in previous experiments. The PMAA tube used to contain
the nitromethane had an outer diameter of 3,81 cm (l1-1/2 inches)
and a wall thickness of 0.476 cm (3/16 inch). The PMMA extension
tube had the same dimensions as the nitromethane container, which
created an internal area expansion between the driver and the
extension tube of (l.1225/0.726)2

included as a possible means of determining whether the plasma

2.4. This expansion was

jet was a gas or whether it consisted of a liquid droplet
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Figure 43 Results from explosive driver test APC-9 (5.08-cm-

o.d. stainless steel driver tube).
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Figure 45

(c) t = 217 us, x = 216 to 255

Radiographs of PMMA extension tube chamber downstream
of jetting driver in test APC-9 (5.08-cm stainless-

steel driver tube).
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spray. As a gas, the expansion would reduce the energy flow

along the axis, whereas a droplet Jjet should be unaffected.

The results of this experiment are presented in Figures 47
through 50. The trajectories of the detonation wave and plasma
jet given in Figure 47 yield velocities of 0.61 cm/us and
1.21 cm/us, respectively. The radiograph given in Figure 48
shows a normal tube collapse, but a collapse angle of 18,5
degrees. The higher than nermal (17 degree) collapse angle was
attributed to the greater-than-desired nitromethane thickness
resulting from the use of off-the-shelf commercial tubing. Some
evidence of jetting is provided in Figure 49 by the deformation
and ablation of the ionization pins. In addition, there are
small clouds of what appears to be a high density material
between the first and second pins. However, there was very

little damage to the aluminum target as shown in Figure 50.

Several possibilities emerged as candidates for causing the
unplanned reductior. of jet energy in this experiment: (1) the
collapse process is near a threshold whereby a small increase in
the collapse angle changes the material state of the jet, e.qg.,
droplets to a gas; (2) the jet is gaseous and the flow through
the area expansion between the driver and extension tube
significantly reduced its axial energy; (3) an asymmetric
implosion was inadvertently generated because the manufacturing
tolerances for the thin-walled stainless steel tubes were
considerably greater than the manufacturing specifications, or
the tube was not centered in the nitromethane; (4) the lengths of
the stainless steel tube and the PMMA extension tube were not
reduced in proportion to the reduction in tube diameter, thereby
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{a} t =220 us, x = 136.4 t0 175.2 cm

lc) t=220us, x =217.1 to 256 cm

Figure 49 Radiographs of PMMA chamber downstream of jetting

explosive driver in test APC-10 (1.905-cm-0.4.
stainless steel driver tube).
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Figure 50

Aluminum target from test APC-10 (1.905-cm-o.d.
stainless-steel driver tube).
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causing a length effect such as boundary-layer growth (choking),
ablation, and/or condensation on the walls. Since no conclucsions
could be drawn even after a careful analysis and review of the

experimental data, an additional experiment was planned.

APC-11. The unexplained reduction in axial energy flow in
the previous experiment led to a design that was more rigorously
scaled to the configurations that had produced high energy plasma
jets. The lengths of the stainless steel driver tube and the
PMMA extension tube were reduced in this experiment by a factor
of 0.38, which was the ratio of the outer diameters of the driver
tubes (1.905 cm % 5.042 cm). The area expansion used in test
APC-10 was eliminated by making the inner diameter of the exten-
sion tube approximately egqual to that of the driver tube. How-
ever, the diameter and wall thickness of the PMMA tube containing
the nitromethane was the same as used in Test APC-10. Each com-
ponent of the experiment was carefully inspected for aherence to

tolerances, concentricity, and manufacturing specifications.

Figures 51 through 54 show the results that were obtained
for this experiment. The x-t plot given in Figure 51 shows that
the detonation velocity was 0.60 cm/us, and the jet velocity was
1.17 cm/us. The radiograph of Figure 52 shows the collapse
process was normal with a collapse angle of about 18 degrees.
The deformation and ablation of the ionization pins and the high
density "clouds" present in the radiographs of Figure 53 were
quite similar to previous jetting drivers. The conclusive
evidence of high energy jet flow was the damage to the 10.16 cm
(4 inch) aluminum target shown in Figure 54. The driver had
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Figure 54 Aluminum target from test APC-11 (1.905-cm-0.d.
stainless-steel driver tube).
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produced a 1,905-cm~diameter hole to a depth of 8.4 cm. The

crater volume was 29.6 cm3.

Since several parameters were changed in this experiment,
the results could not be used to explain the dramatic loss in
axial energy in Test APC-10. However, the high-energy flow that
had been achieved with a 1.905-cm-diameter stainless steel tube
justified their use in the spherical high explosive experiment
described in the next section.
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SECTION 3

SPHERICAL HIGH EXPLOSIVE EXPERIMENT (LS-1)

: The results of the explosive driver tests described in

Section 2 clearly established that asymmetries cause a dramatic
reduction of the energy flow in explosively collapsed tubes.
However, the collapse conditions for these tests were
considerably different from those that would exist for an LOS
pipe in an underground nuclear test. In the explosive driver
tests, the tube 1is collapsed by the steady-state, constant
detonation pressure of the high explosive which is in direct
contact with the tube; whereas, the collapse of an LOS pipe is
due to the transient, decaying tangential stress behind a
spherically divergent shock wave in the media around the pipe.
The spherical high explosive experiment (LS-1) described in this
section was designed and conducted to investigate the effects of
asymmetries on tubes in a collapse environment that is more

representative of the latter case.
3.1 EXPERIMENT DESCRIPTION

Figure 55 shows a cross-section and plan view of the
experimental configuration used to provide a small-scale simula-
tion of LOS pipe collapse conditions. This figure will serve as
a reference for tne orientation and location of all of the

apparatus used in this experiment. A fiberglass sphere contained
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Figure 55 Experimental configuration of spherical high
explosive experiment.
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a liguid high explosive, nitromethane. This spherical energy
source was placed in a plywood box located below ground level,
Six stainless-steel tubes (LOS models) and two instrumentation
lines extended radially from the suface of the fiberglass sphere
to a plywood platform on the top of the box. The tubes and
instrumentation lines were oriented at an angle of 45 degrees
with a vertical axis of the sphere and separated by an azimuthal
angle of 45 degrees. The box was filled with saturated Monterey
sand and surrounded by wet local sand. The photographs in
Figure 56 show the experiment during various stages of

construction and assembly.

3.1.1 Explosive Sphere. The design approach used for the

energy source was to select an explosive sphere size that would
generate a spherically divergent shock wave in saturated sand
capable of collapsing tubes of the same length and diameter as
those used in the explosive driver tests., A preliminary design
analysis showed that the sphere size required for the tube
dimensions used in these tests would be prohibitively large (and
expensive) for a laboratory experiment. Thus, the tube
dimensions used in tests APC-10 and ACP-1ll were reduced to
provide a data base for tubes that could be used in this experi-

ment with a smaller explosive sphere,

Figure 57 shows the peak stress generated in wet sand by the
detonation of a 60,.96-cm- (24-inch-) diameter sphere of the
liquid explosive, nitromethane. The upper curve is the
calculated peak radial stress in lU0O-percent saturated sand as a
function of the distance from the center of the sphere (Refer-
ence 12), The lower curve is based on free-field stress
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(@)  Preparation of test bed.

(b) Alignment of LOS Models

(c) Configuration prior to firing

Figure 56 Photographs of spherical high explosive
experiment (LS-1).
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measurements that were scaled up from experiments using lé-inch-
diameter spheres of nitromethane in wet sand of unknown
saturation (Reference 13), The scatter in these measurements
reflects the variation in water content from experiment to
experiment., Collapse is assumed to occur above a stress of

€0 kPa (6 kbar). Although collapse may occur below this stress
level, the collapse conditions are probably marginal for the
formation, progression, and detection of jetting. The
configuration and stress-range curves given in Fiqure 58 indicate
the 60 kPa stress is in the range of 11 inches (experimental, wet
sand) to 28 inches (calculated, 100 percent saturated sand).

This would correspond to a collapse tube length between 15 and 37
diameters of a 1.905-cm~ (0.75-inch) diameter tube.

Details of the explosive sphere are given in Figure 59a.
Approximately 300 pounds of nitromethane were contained in a
6l-cm- (24-inch-) o.d. hollow fiberglass and resin sphere having
a wall thickness of 0,102 cm (0.04 inch). The sphere was formed
from two hemispherical shells which were joined at the midplane
and supported by the use of a plywocod flange, Nitromethane was
introduced (by gravity) into the sphere through an opening in an
aluminum flange located on the bottom of the sphere. This flange
also supported an aluminum tube which was used to position a
5.08-cm-diameter C-4 explosive booster containing a RP-3
spherical detonator at the center of the sphere. A similar tube
was mounted on a smaller flange at the top center of the sphere
to vent the air during the nitromethane filling process. A
photograph of the assembled sphere is presented in Figure 59b.
This photo also shows the aluminum stand used to support the
sphere in the test bed and the small PMMA rings which located the
LOS models at the surface of the upper hemisphere,
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3.1.2 Test Bed. A reinforced plywood box was used to
contain the saturated Monterey sand. The box had a floor area of
3.34 m? (36 ft2) [1.83 m by 1.83 m (6 ft by 6 ft)] and a height
of 1.37 m (4-1/2 ft). Cracks and joints were caulked with a
vulcanized rubber sealant to make the box watertight. The box
was positioned 1.37 m (4-1/2 ft) below ground level on a
compacted sand base., Wet local sand was used to backfill the

hole containing the box.

The sand used as the test medium was designated as Lapis
Lustre or equivalent from Monterey, California, and met the

following specifications:

U. S, Standard Sieve Size % Passing
$12 100
#16 95-100
#20 40-60
#30 5-15
#50 0-2
$#100 0

It should be noted that this is the same sizing of sand that
was used in the Boeing Drift Experiment on the DIABLO HAWK event.

The test bed was prepared by slowly pouring individual sacks
of sand into a steady stream of water. Care was taken to
maintain a thin slurry of sand and water in the box at all
times. Hand mixing and pneumatic vibrators were used to maximize
the density and saturation., However, no quantitative
measurements of porosity or saturation were made.
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3.1.3 LOS Models. Six 321 stainless steel tubes (Military
specification 8808) were used as LOS models. The outside
diameters (0.75 inch) and wall thicknesses (0.010 inch) of the
models were the same as the tube used on Test APC-11 described in
the previous section. C(ross-sections of the planes of the
experimental configurations which contain the various models are
given in Figures 60 to 62, A small steel plug was welded onto
the end of tubes closest to the explosive sphere. The other end
of each tube was welded to a steel flange which joined the tube
to an aluminum target. The air in the tubes was evaluated
through small ports which passed through the 10.16-cm- (4-inch-)
thick aluminum targets. The targets were contained in steel
line-up tubes located on tﬁe plywood platform above the surface
of the saturated sand.

The cross-sections of Models 1 and 5 are given in
Figure 60, They were considered standard models and expected to
provide the baseline performance for symmetrically collapsed
tubes., The tubes for these models were 0.94 m (37 inches) long.

The tubes for Models 2 and 6 were also 0.94 m (37 inches)
long but were helically wrapped with lead to introduce
asymmetries. These models are shown in Figure 6l. A U0.8Y9-cm-
(0.35~inch~-) wide ribbon of 0.025 cm (0.010 inch) sheet lead was
epoxied to the outside surface of the steel tube used in Model 6
in a helical pattern having a 3.429 cm (1.35 inch) pitch (pitch
angle of 29.8 degrees). The width and pitch of the lead ribbon
used in Model 2 was the same as Model 6, but the the thickness
was increased to 0.20 cm (0.080 inch).

104

- 7

T T T WG A - e e e e e ——s

C I e




A
|
|
*(1-81) sI®pow gOT piepuels buturejuod aueld 3SemM-3Sed JO UOT3IDIS-SS0I) (9 2anbrg _

2o0.0Q) 760 5,0 O LUy Gt s By S SN YOO, o (e
oo ingy 0.9, AUvaJ.Won\wanueo%huu ...-...,O.A,V.Q«..,
A )

001-Z-6L

431s008 ¥-2
19r8werp

{yout Z)

wd 80°G

3H3HdS WN
Jajawelp
(yout )
wd 96°09

105

(sayou £g)

wo g6'€6_|[:
N|: !
(sayout 8i) : w
wo Z¢°Gy .
saaibap Gy S {
L !
* 39n1 13315 SSIINIVLS _1
| 139HVL WANINATY b
L 713aon S 713AON y

-

T T




*(1-97) siopow SQT paddeim-pes] buturtejuod sueTd FIS-MN JO UOTIDSS-SSOID T9 2InbTdg

Dy 5 07 50Ty O TS N0 s O ey
12020 %0 250250 0 A0 )92 0 a5 0580
2T 18 Vo005 A Qg D e Bl

104-Z-6L

(sayoul ZoL) W eS'

4315008 +#O
1alowelp

{youl z) wa 8o'g

JHIHJS N J1918Welp

39Nl 13318 SSATINIVLS
A3ddvdm av3TOIHL

(ydut $2) wa 9609 ¥

AaNVSs d31vHdNivs

T~

(soydul £¢)
wo 86'E6

(sayou1 g1

wo g/'Gt
saalbap Gy

e \

L - y A |

9 1300w

L

34N1 73318 SSATNIVLS
Q3ddVHM V3T NIHL

1394v1 WNNINNTY

106

¢ 13a0n

e e e > W TR

- 7

Ryt ]

| S




*(1-S7T) sT9pow SOT 3I0Ys burturteiuod

surTd MS-AN JO UOT3DIS-SSOID 79

aanbty

LSO RGNS 85 009 R WSS 452 08 0 oyt 0s S a0 S g
_H.cDD\u a o,..UOQoJOoJG W«Q 3..% aam\. o &m.obyo wan OeOwM - m :\Waom ot e w ;
Y e - (sayout ZOL) W 6G' T ”
3% “
Ss |
...° *
0 |
bN .
xS
ye,
20 H31S008 %D 198welp )
i (your g) wo go'g / |
m,
,@a JHIHIS WN sa3awelp (sayour 9)
.O (yaut $Z) wd 96°09 wo $Z°Gt W
HOV3I 13S L 'SNid Zd !
SNid NOtLVZINOI d3ddVvO W\ ”
o.ﬂ mz
Mu ¥ B W
MY s g
My o o
S A (satout 1g) _.
sayaul g|) g w
,...OO I wo z7°Gy s32469p Gp Wwo L8l |
.u. . /n.vn.mu @ ‘..\\ P, V4 N
(& o/v G W72 ,
.u.t /4 &/Y e \ ) - - y 4 — i
N 1
/ ! \ r
440-GNVL1S NOTAN HLIM
39dN.L 1331S SSTTINIVILS
i
139HVLI WANINNTY
8 13a0W v 1300W .,
-GS §
0 m—— .

e by




Models 4 and 8 were shorter than the standard models. They
were included to investigate the initiation and progression of
jetting at two lower stress levels., Cross-sections of these
models are given in Figure 62. Model 4 had a tube length of
U.79 m (31 inches). A 15.24-cm- (6-inch-) long nylon rod having
the same diameter as the tube was joined to the tube and extended
to the surface of the explosive sphere. This rod was used to
align the tube radially and to position the tube exactly 15.24 cm
(b 1nches) from the surface of the sphere. The stress at this
distance was expected to be between 150 kPa (1 kbar) and 320 kPa
(32 kpar). Model 8 had a tube length of 0.4 m (25 inches) and a
nylon rod of 0,30 m (12 inches). The stress at the beginning of
the tube (a range of U.6l1l m |24 inches]) was expected to be
between 60 kPa (b kbar) and 150 kPa (15 kbar).

A photograph of the LOS models 1i1s given 1in Figure 63. Five
of these models were used in the experiment. The model with the
0.61 m (24 inch) nylon rod (extreme right in photograph) was
replaced with one having a 15.24 cm (6 inch) rod. Figure 63 also
shows an aluminum target, a thick-walled steel cylinder for

containing the targets and a steel line-up tube.
3.2 INSTRUMENTATION

The active instrumentation used on this experiment was
directed at measuring the time-of-arrival of the shock wave in
the saturated sand, the stress behind the shock wave at three
different ranges, and the velocity of the jets generated by the
collapse of the tubes used in the Models 1 and 5 (standard-
symmetrical collapse). The penetration of, and damage to, the
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109

-y e -




10.16-cm- (4-inch-) thick aluminum targets at the end of each
tube was used to provide passive, terminal evidence of the jet

energy denerated by the collapse process.

Three different methods were used to measure the time of
arrival of the shock wave in the sand: piezoelectric pins,
capped ionization pins, and time domain reflectometry (TDK).*
Two radial lines of six PZ pins and six capped pins were placed
at 15 cm intervals which extended between 32 cm and 107 cm from
the center of the explosiwe sphere, One line was located in the
SE plane (see Figure 55), approximately 68° from a vertical line
through the sphere. The other line was in the NW plane and also
oriented at a 68° angle from the vertical. The times of shock
arrival from these pins were recorded on oscilloscopes and on

magnetic tape.

The shock trajectory was also determined by time-domain-
reflectometry. The time of arrival was obtained by the
reflection of 1000 (20 wus) electrical pulses from the impedance
change in coaxial cables as they were being collapsed by the
shock wave. Two different types of cable, RG-174 and FSJ1-50
(Super Flex) were used. Two cables, one of each type, were in
the s plane (see Figure 55) and extended from the surface of the
sphere to the platform at a 45° angle with a vertical line
through the center of a sphere. Another FsJ1-50 cable was
located in the N plane at the same angle with the vertical. The

*Provided by Tom McKown, Los Alamos Scientific Laboratory, P.O.
Box 990, Los Alamos, N. M, 87545, and Dennis Whann of EG&G,
680 East Sunset Road, Las Vegas, Nevada 89112,
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trajectory of the shock wave was determined by the round-trip
transit time of the electrical pulses which was recorded
digitally in a solid state memory and transferred to cassette

tapes after the experiment,

Three ytterbium stress gages (flat packs) were used to
measure the stress behind the shock wave at three different
ranges. Two ytterbium elements in each gage provided dual
nmeasurements at each range. Two of the gage were located in
the N-S plane (see Figure 55). One gage (B) was in the S plane
at a range of 51 cm and 23° from the vertical. The gage (A} in
the N plane was at a range of 71 cm and oriented at the same
vertical angle., The third gage (C) was at a range of 91 cm and
oriented at 45° in the SSW plane. The voltage output from the
bridge circuit, where the ytterbium grid forms one leg of the
bridge, was recorded on high speed magnetic tape.

Four ionization pins were included on each of Models 1 and 5
to measure the time of arrival of the plasma jet in the
symmetrically collapsed tubes. The pins were placed at 7 cm
intervals at a range between 98.5 cm and 11i9.5 cm from the center
of the sphere. This range minimized the possibility that the
pins and/or their cables would interfere with the collapse

process.
3.3 EXPERIMENTAL RESULTS
The time of arrival data for the spherically divergent wave

are given in Figure 64, The agreement between the piezoelectric
pins, capped pins, and the ytterbium stress gages was quite
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Figure 64 Trajectories of shock wave and jet in spherical
high-explosive experiment (LS-1).
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good. The TDR data were also in close agreement near the sphere
but gave much longer times of arrival at the larger distances
{lower stress levels). Kkepresentative examples of the TDR data
from the RG~174 and FSJ1-50 cables are given in Figures 65

and 66, respectively. The observed trajectory of the wave in
Figure 64 (solid curve) shows that the shock velocity was
considerably lower than had been expected. The trajectory
calculated for the detonation of a 60.96 cm (24 inch) sphere of
nitromethane in lU0U-percent saturated, 37-percent porosity sand
given by the dotted curve in this figure) was obtained from
Keference 11). The dashed curve was scaled from experimental
data for 40.64 cm (16 inch) nitromethane spheres in wet sand of
unknown saturation (Reference 12). In this experiment the
average shock velocity measured in the first 15 cm of sand was
0.21 cm/us. This wvelocity was expected to be between 0,32 cm/us
(experimental-unknown saturation) and 0.43 cm/us

(calculational--100 percent saturated).

A low velocity shock wave was particularly surprising since
the stress measurements from this experiment were within the
scaled range of stress measurements for the previously mentioned
40.64 cm (16 inch) nitromethane spheres where the water
saturation varied from experiment to experiment, This is
illustrated in Figure b7. The actual traces for the six stress
gages are given in Figure 68, Gages B-l, B-2, and A-l clearly
reached a peak stress before failing. Peaks could not be
identified on the other gage records before gage failure.

Figure 64 also shows the times of arrival from the
ionization pins in the tubes used for Models 1 and 2. The times
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Figure 68 Ytterbium stress gage records for high explosive
spherical experiment (LS-1).
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for Model 5 appear to be consistently 7 us later than those for
Model 1. The slope of these data show a velocity of

0.88 cm/us, This velocity indicates the symmetrically collapsed
tubes had indeed produced a jet., Extrapolation of the data
indicates the origin of the Jjet was near the explosive-sand

interface as one would expect.

Locating the aluminum targets after the detonation of the
explosive proved to be a very difficult and time consuming
task. Four of the targets were found between 600 feet and
1500 feet from the explosion. Two targets have not yet been
located. Photographs of the recovered targets are given in
Figures 69 to 72.

Figure 6Y shows the target, flange, and a portion of the
tube used in Model 8. The tube showed considerable axial
compression, but the target was undamaged. Since the tube began
30.48 cm (12 inches) from the explosive-sand interface, this
effect would indicate that the collapse conditions at this
distance were insufficient to cause jetting. Figure 67 shows the

peak stress was approximately 70 kPa (7 kbar) at this location.

The target from Model 5 is shown in Figure 70, The sym-
metrical collapse of the standard length tube had produced an
irregularly shaped crater., It had a semicircular cross-section
with a spiral-like penetration around its periphery. The crater

had a diameter of 2 cm, a depth of 2 cm, and a volume of 4.9 cm3,

Figure 71 shows the target from Model 6. The tube for this
model had a thin, helically wound lead ribbon, The crater
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Figure 69 Target from Model 8
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(a) TARGET FLANGE

(b) SECTIONED TARGET

Figure 70 Target and flange from Model 5 (symmetrical
collapse; standard tube; LS-1).

120

S agian = - - . - - < o [R— R [




A4112

(a)

1 cm/ 0oty

ALUMINUM TARGET STEEL FLANGE

(b)

Figure 71

SECTIONED TARGET

Target from Model 6 (asymmetrical collapse;
thin lead wrap; LS-1).
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(a) ALUMINUM TARGET

(b) SECTIONED TARGET

Figure 72 Target from Model 2 (asymmetrical collapse;

thick lead wrap; LS-1).
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extended into the target like a corkscrew, A final depth of

4,5 cm was achieved in approximately 270 degrees, A dotted line
on the sectioned target photograph indicates the maximum
penetration. The crater had a diameter of 2 cm and a volume of

4.7 cmS.

The target from Model 2 was even more unusual. The crater,
produced by the tube with a thick lead ribbon, had an annular
cross-section with an outer diameter of 2 ¢m and an inner
diameter of 1 cm, 1It, too, had a corkscrew appearance with a
depth ranging from 0.7 cm to a maximum of 2.2 cm. The volume of
the crater was 2.9 cm3. The photograph of the sectioned target
shows that the post in the center of the crater (annulus) was

undamaged aluminum.

3.3.1 Discussion of Results. The results of the first

spherical high explosive experiment were considerably different
from the results of the explosive driver tests, The spherically
divergent shock wave produced jetting in all of the LOS models
that extended to the snrface of the explosive sphere, whether or
not they included asymmetries. Furthermore, the energy flow in
the jets was lower than had been observed in the comparable
driver tests. This is illustrated in Table 2, The velocity of
the tip of the jet in LUS Model 5 (standard) was 75 percent lower
(0.88 cm/us compared to 1.17 cm/us) than explosive driver test
APC-1l. Also, the crater volume and maximum depth of penetration
in the aluminum target were respeccively 17 percent and 24
percent of those produced by the explosive driver test. These
results are reasonably self-consistent, Jet penetration theory
shows that the penetration depth, P, is proportional to the jet
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lgngth, xj; or P = Lj (Apj/pt)l/z, where °j is the density of the
jet, e, is the density of the target, and 4 is a constant that
equals 1 for continuous Jjets and 2 for dispersed particle jets.
While this description is normally used only for constant
velocity jets, it should provide limiting values for the length
of jet., If we assume, as a first approximation, that the jets in
both experiments were equal in density, the length of the jet for
this experiment would be

45 (Ls=1) = %3 (APC-11) PoPe—Iry  or 1l.4 cn.
This would imply that the jet was formed by the collapse of the
tube near the nitromethane-sand interface (20.5 cm + 1.6 cm for
the steel plug), which extended for a distance of 11.4 cm to a
range of 43.5 cm. The stress at this range was « 125 kPa
(v 12.5 kbar) according to the stress measurements (Figure 67).
This appears to be a reasonable cut-off range, since steel has a
dynamic yield strength of approximately 120 kPa (12 kbar).

The theory of jet penetration (constant velocity jets) shows
that the volume of material removed from a semi-infinite target
is proportional to the total energy contained in the jet. The
ratio of the crater volumes would therefore indicate that the jet
from the spherically collapsed tube (LS-1) had 16.5 percent of
the energy produced in the drive test (APC-1)., A separate
estimate can be obtained by comparing the kinetic energy of the

jets: )

V. - . - . (Ls-1 A, (LS-1
KE (Ls-1)  _ | Y5 (LS-1) < 1 (LS-1) . p { ) x 3¢ :
RE(APC-11) vj (APC-11) ;j (APC-11) pj (APC-11) Aj (APC-11)

2
(o.sg) . (1%.3) w1 x1

0.135 (= 13.5%)
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Of course this estimate assumes: (1) the velocity of the jet is
constant and equal to the value determined by the ionization pins
in both cases; (2) the cross-sectional area and densities of the
two jets are comparable; and (3) the lengths of the jets are
directly proportional to their penetration depths as discussed

above,

It should be noted that three pre—test events may have
introduced certain asymmeties and thereby adversely affected the
results of the spherical eiplosive test., The first event
occurred while filling the plywood box with saturated sand. When
the sand level reached approximately 0.8l m (32 inches), there
was a small but perceptible shift in the explosive sphere, and
the water level began to recede. It was estimated that the
sphere had dropped as much as 9.5 mm (3/8 inch). From all
indications, the sand underneath the box had settled, and a
watertight seal in the box had been ruptured by the process. The
models were then realigned, and the explosive sphere was
carefully referenced to an external benchmark so that any further
shifts in position would be observed. Up to the time of firing,
the sphere had dropped less than 3 mm (1/8 inch). The water flow
was also adjusted to compensate for the leak.

The second event was a misfire, which occurred when the RP-3
detonator failed to initiate, The continuity of the exploding
bridgewire detonator circuit was found to be open after the
firing attempt, Since the circuit had been checked immediately
before firing, it was postulated that the settling process (first
event) had broken a watertight seal between the detonator and
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firing cable and had shunted the firing current. As a result,
the bridgewire burned out instead of exploding and detonating the
50.8-mm~ (Z2-inch-) diameter C-4 explosive booster. A separate
RP-1 detonator was then lowered through the aluminum vent tube
(see Figure 5%) and positioned on top of the C-4 booster. This
caused initiation to occur 25.4 mm (1 inch) above the center of
the sphere. When combined with the settling of the sand, the
total unplanned asymmetries could have caused the detonation wave
to be tilted by approximately 6.4 degrees with respect to the
longitudinal axes of the models.

The third event was a loss of saturation in the sand. The
compensating water flow was turned off after the misfire and
remained off for a period of two hours while the misfire was
diagnosed and corrected, Since water was not reapplied, the
saturation conditions were unknown at the actual time of firing.
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SECTION 4

SPHERICAL HIGH EXPLOSIVE EXPERIMENT LS-2

The results from the first spherical experiment (LS-1)
indicated that there was very little correlation between the
effects of asymmetries on the jetting produced by the steady-

L state explosive drivers and those produced by a transient,
spherically—-divergent, shock wave. Therefore, the primary
objective of the experiment described in this section was to
evaluate alternative methods of inhibiting or eliminating the
jetting phenomena resulting from the collapse of LOS models by
spherically divergent shock waves. A secondary objective was to
confirm the results of the first spherical test, which had been
clouded by a loss of saturation and the introduction of unplanned

asymmetries,
4.1 EXPERIMENT DESCRIPTION

The experimental configuration used for LS-2 is given in
Figure 73. The saturated sand test bed was contained in a
2,44-m- (8-ft-) diameter, 6.35-mm- (1/4-inch-) wall, steel
cylinder. The cylinder was mounted on a 101.6 mm (4 inch)
concrete pad. The interface between the cylinder and pad was
joined with a cement grout and a water-based epoxy sealant. The
concrete pad was constructed on compacted sand in the bottom of
the crater resulting from the previous spherical test, LS-1. The
explosive sphere was mounted on a 304.8-mm- (l2-inch-) diameter
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(b) Pian View

Figure 73 Experimental configuration of experiment LS-2.
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vertical steel cylinder embedded in the concrete pad. Except for
the initiation system, the explosive source was similar to that
used in LS-1 (Section 4.1.1). The 1initiation system consisting
of an RP-2 detonator, 1.22 m (48 inches) of mild detonating fuse
(MDF), a spherical tetryl pellet and a 50.8 mm (2 inch) sphere of
C-4 explosive, was inserted into the nitromethane sphere through
the vertical vent tube. The water used to saturate the Monterey
sand was injected into the test bed through a perforated PVC pipe
located around the inside bottom perimeter of the sand

containment cylinder.

As shown in Figure 73b, the horizontal midplane of the
explosive sphere was divided into fourteen equal segments of
25.,71° each. Two of these segments contained time-of-arrival
instrumentation lines, ten contained LOS models, and two were
left vacant since they contained the flange which coupled the two
hemispherical shells of the explosive container. The LOS models
extended from the surface of the explosive sphere to the outside
surface of the sand confinement cylinder. An aluminum flange was
fastened to the end of each model to accommodate a vacuum port,
and a 0.25 mm (0.010 inch) Mylar diaphragm which separated the
models from their aluminum targets. Each target had a diameter
of 15.24 cm (6 inches) and a length of 15.24 cm (6 inches). The
targets were contained in thick-walled steel cylinders and
supported on steel cradles which were welded onto the side of the
sand confinement cylinder. The photographs given in Figure 74
show the experiment before and after sand emplacement.

Stainless steel tubing (321 welded and drawn, Military
specification 88U8) was used for the LOS models. Each model had
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(a) Explosive sphere prior to model installation and sand emplacement

Figure 74a Photograph of experiment LS-2.
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an outer diameter of 1.905 cm (3/4 inch) and a wall thickness of
0.028 cm (0.012 inch). A description of the individual models is
given in Figures 75 to 84 of Section 4.,3. Models 1 and 2 were
standard models with no asymmetries, Model 3 had a foam ribbon
helically wound around the external surface of the stainless
steel tubing. A lead ribbon helix was used on Model 4. Model 5
was similar to Model 4 except for a iead helix on the inside
surface of the tube for the last 30.48 cm (12 inches). Model 7
had a polyolefin ribbon on the inside surface of the tube, The
wall thickness of Model 8 was increased from 0.3 mm (0.012 inch)
to 2.34 mm (0,092 inch) by wrapping sheet lead around the tube.
Models 6, 9, and 10 had polyolefin, glass, and cardboard liners

respectively.
4.2 INSTRUMENTATION

The penetration of, and damage to, the aluminum targets was
used as the principal evidence of the jet energy generated by the
collapse process. The only active instrumentation used on this
experiment was directed at measuring the time-of-arrival (TOA) of
the free-field shock wave in the saturated sand. Two radial TOA
pin lines were used. The pin lines were positioned on opposite
sides of the explosive sphere. Each line contained seven capped
ionization pins and seven piezoelectric pins. A pin of each type
was located at distances of 32 cm, 37 cm, 47 cm, 62 cm, 77 cm,

92 cm, 107 cm, and 122 cm from the center of the sphere,
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4.3 EXPERIMENTAL RESULTS

The most salient results of Experiment LS-1 are given in
Figures 75 to 84. These figures show the initial configuration
and the target damage for each of the ten LOS models. The
penetration depth, crater diameter, and crater volume produced in
the aluminum target by the jet from each LOS model are summarized
in Table 3. The models are also ranked according to target
damage (crater volume and penetration depth) in this table.

These data show that Jjetting was essentially eliminated in the
two LOS models with internal spirals, Model 5 and Model 7, and
that the most severe target damage was produced by the collapse
of the thick lead wrapped tube (Model 8) and the glass-lined tube
(Model 9).

The trajectory of the spherically divergent shock wave in
the saturated Monterey sand is shown in Figure 85, The
trajectory is based on the time—of-arrival measurements on
opposite sides of the explosive spheres. Only one set of data is
shown since the times-of-arrival for the two locations were
identical within the resolutions of the measurement. It should
be noted that the time coordinate of Figure 85 is depressed by
172 microseconds. This is the time required to initiate the C-4
explosive booster using the mild detonating fuse and the
exploding bridgewire detonator, which was outside the explosive
sphere.

The velocity and trajectory of the free-field shock wave for

LS-2 was quite close to the trajectory calculated for a 37
percent porous, 100 percent saturated sand (Reference 12). In
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TABLE 3

SUMMARY OF RESULTS (EXPERIMENT LS-1)

Target Damage

Penetration Crater Crater
Model Depth Diameter Ve lume
Number Model Description {cm) {cm) {cm?)
1 Standard (baseline) 5.75 2,2 - 2.4 16.5
2 Standard (baseline) 3.40 1.5 - 1.6 9.1
3 Foam spiral - External 4,15 2.2 - 2.8 13,6
4 Lead spiral - External 4,20 2.0 - 2,6 17.0
5 Lead spiral - External,
Lead spiral - Internal Nil Nil Nil
6 Polyolefin liner - Internal 7.20 1.9 - 2.0 17.2
7 Polyolefin spiral - Internal Nil Nil Nil
8 Lead wrap - External 9.2 2.3 - 2.5 37.2
9 Glass liner - Internal 7.7 2.3 - 2,7 31.5
10 Cardboard liner - Internal 5.8 2.1 - 2.4 10.6
Crater Penetration
Model Volume Model Depth
Number _(cm?) Number (cm)
Least Target Damage 7 Nil 7 Nil
5 Nil 5 Nil
2 9.1 2 3.40
10 10.6 3 4,15
3 13.6 4 4.20
1 16.5 1 5.75
4 17.0 10 5.80
6 17.2 6 7.20
9 31.5 9 7.70
Most Target Damage 8 37.2 8 9,20
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fact, the agreement supports the postulate that a considerable
amount of water was lost in the first experiment (LS-1).

4.4 DISCUSSION OF RESULTS

Based on the observed target damage, jetting did not occur
in Models 5 and 7. Both of these models had asymmetries on the
inside surface of the stainless steel tube, However, they were
designed to evaluate two entirely different phenomena. The lead
helix used in Model 5 was placed in the last 0.305 m (12 inches)
of the tube as a means of suppressing an already formed jet,

This model also had an external lead helix along its entire
length. Conceptually, the internal lead helix would serve as a
baffle and interrupt the annular-like jet flow which was inferred
from the target damage observed in LS-1 (Figures 70-72 and
Section 4.3). Model 7, on the other hand, had a polyolefin helix
inside the entire tube., This helix was directed at reducing or
eliminating the jet at its source by: (1) placing an asymmetry
precisely where the jet is formed; and (2) using a material with
low melting and vaporization points. Conceptually, the jet would
either be disrupted by the presence of the asymmetry, or the
plastic would be converted to a gas by the collapse process. In
the latter case, it was postulated that the energy and momentun
in a gas jet could be reduced more easily than a liquid and/or a

sclid jet.
The most disquieting results of LS-1 were the rather wide
variations in target damage which were produced by the two

"standard"™ LOS designs, Models 1 and 2. Even though both of
these models were designed, fabricated, assembled, installed and

148

T A e — - = e - = -,

S




tested in the same manner, Model 1 produced 8l percent more
crater volume and 69 percent greater penetration depth than

Model 2. The data base is insufficient to assess whether this
result was an anomaly or within the normal reproducibility spread

of jetting phenomena,

The target damage resulting from Models 3 and 4 provides
convincing evidence that asymmetries on the external surface of a
tube do not inhibit the formation of a jet when the tube is
collapsed by a spherically divergent shock wave. In fact, the
foam and lead helixes used in these models produced target damage
within the range of that produced by Models 1 and 2, which had no

asymmetries.

The target damage produced by Models 6, Y, and 10 indicates
that internal liners are also not an effective way of eliminating
the jet from a collapsing tube., However, it does appear that the
liner material replaces the tube material in the jet. This
observation is based on the recognition that the target damage
from a glass liner (Model 9) was greater than that for a
polyolefin liner (Model 6) which was, in turn, greater than that
for a cardboard liner (Model 10). Since the térget damage
resulting from the glass liner was so much greater than the other
materials, these results may also indicate the importance of the
melting and vaporization properties of the tube and liners.,

The final observation is that the lead wrapped tube used in
Model 8 produced the greatest target damage. This is not
unexpected since, according to classical jetting theory, the mass
of the jet is directly related to the mass of the tube and the
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collapse angle (Section 2.2). Not only was the tube mass per
unit length of Model 8 over ll1 times greater than the "standarg"
tube, but the thicker tube undoubtedly resulted in larger
collapse velocities and thus larger collapse angles as it
converged on axis.
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